МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой

Механики и компьютерного моделирования д.ф.-м.н., проф. А. В. Ковалев 21.03..2025г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.В.04 Интеллектуальное управление мехатронными системами

- **1. Код и наименование направления подготовки:** 15.03.06 Мехатроника и робототехника.
- **2. Профиль подготовки:** Интеллектуальные системы управления в мехатронике и робототехнике.
- 3. **Квалификация (степень) выпускника:** Бакалавр.
- 4. Форма обучения: Очная
- **5 Кафедра, отвечающая за реализацию дисциплины:** Механики и компьютерного моделирования.
- 6. Составители программы: Яковлев Александр Юрьевич, к.ф.- м.н., доцент.
- 7. Рекомендована: НМС факультета ПММ, протокол № 6 от 17.03.2025

9. Цели и задачи учебной дисциплины:

Целями освоения учебной дисциплины являются:

- -развитие у студентов способности проведение работ по обработке и анализу научнотехнической информации для последующего выбора или создания программного обеспечения для системы управления робототехническими системами в машиностроении:
- формирование у бакалавров знаний по искусственному интеллекту, основных принципов построения систем с нечеткой логикой, экспертных систем и систем нейросетевого управления мехатронными и робототехническими комплексами. Задачами дисциплины являются:- формирование у студентов навыков написания программ управления гибкими производственными системами, робототехническими

системами, а также осуществления их отладки и проверки на работоспособность;

- освоение студентами основных принципов построения интеллектуальных систем, разработка и эксплуатация систем управления, обладающими элементами искусственного интеллекта на основе передового отечественного и международного опыта в области мехатроники и робототехнических систем.
- 10. Место учебной дисциплины в структуре ООП: Дисциплина входит в часть, формируемую участниками образовательных отношений, блока Б.1 учебного плана. Для успешного освоения дисциплины необходимы знания в области технологий программирования и работы на ЭВМ, знания по дисциплинам: Методы искусственного интеллекта, Теория вероятностей, Устройства управления на основе ИИ в мехатронике и робототехнике и другие. После освоения дисциплины студенты должны знать: Основные принципы построения и внедрения интеллектуальных алгоритмов управления в мехатронные и робототехнические системы.

Уметь: реализовывать интеллектуальные алгоритмы решения несложных задач управления устройствами с МК серии STM32.

11. Планируемые результаты обучения по дисциплине (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ПК-3	компетенции Способен осуществлять выбор и создание программного обеспечения для системы управления робототехническ ими системами в машиностроении под руководством специалиста более высокой квалификации	ПК-3.2	Выполняет написание программ управления гибкими производственным и системами и программ сопряжения различных программных сред для управления системами под руководством специалиста более высокой квалификации.	Знать: Основные алгоритмы и математические методы создания программ управления в области мехатроники и робототехники. Уметь: Реализовывать выстраивать алгоритмы решения несложных задач управления мехатронными и робототехническими системами под руководством специалиста более высокой квалификации. Владеть: Методами и алгоритмами написания программ управления в области мехатроники и робототехники.
ПК-5	Способен осуществлять проведение работ по обработке и анализу научно- технической информации и результатов исследований, выполненных	ПК-5.1	отладку и проверку работоспособности Накапливает и систематизирует знания в отношении передового отечественного и международного опыта в области мехатроники и робототехнических систем	и проверке работоспособности систем управления в области мехатроники и робототехники. Знать: Основные методы формирования и систематизации знаний в области мехатроники и робототехники. Владеть: Основными методами формирования и систематизации знаний в области мехатроники и робототехники

под		
руководством		
специалиста		
более высокой		
квалификации.		

12. Объем дисциплины в зачетных единицах/час. — 4/144.

Форма промежуточной аттестации: Экзамен.

13. Виды учебной работы

	Трудоє	мкость (часы)	
Dun viva Siva X na Sani v		По семестрам	
Вид учебной работы	Всего	№ 7 сем.	
Аудиторные занятия	64	64	
в том числе: лекции	32	32	
практические	-	-	
лабораторные	32	32	
Самостоятельная работа	44	44	
Форма промежуточной аттестации – экзамен	36	36	
Итого:	144	144	

13.1. Содержание дисциплины

п/п	Наименование раздела дисциплины	Содержание раздела дисциплины	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК *			
	1. Лекции					
1.1	Базовые понятия искусственного интеллекта.	Мышление и интеллект. Определение искусственного интеллекта. Терминология. Философские аспекты, проблемы систем искусственного интеллекта. История и перспективы развития систем, области их практического использования. Архитектура и основные составные части систем.	Интеллектуал ьное управление мехатронным и системами https://edu.vsu .ru/course/vie w.php?id=317			
1.2	Системы управления с нечеткой логикой	Краткая историческая справка. Основные идеи и практическое применение нечеткой логики. Лингвистические переменные и их описание. Операции над нечеткими множествами. Основная структура и принцип работы системы нечеткой логики. Фаззификация, правила логических выводов и дефаззификация. Пример использования системы с нечеткой логикой.	Интеллектуал ьное управление мехатронным и системами https://edu.vsu .ru/course/vie w.php?id=317			
1.3	Экспертные системы.	Базовые понятия. Назначение экспертных систем. Структуры экспертных систем. Методология построения экспертных систем. Представление знаний, уровни представления и детальности знаний. Методы поиска решений в экспертных системах. Инструментальные средства. Система CLIPS.	Интеллектуал ьное управление мехатронным и системами https://edu.vsu .ru/course/vie w.php?id=317			

1.4	Нейронные сети.	Нейрон и его модели. Простейший персептрон. Системы типа Адалайн. Классификация искусственных нейронных сетей.	Интеллектуал ьное управление мехатронным и системами https://edu.vsu
			.ru/course/vie w.php?id=317 67
1.5	Нейросетевое управление	Статические линейные однослойные нейронные сети. Статические многослойные нейронные сети. Алгоритмы обучения статических многослойных нейронных сетей. Динамические алгоритмы обучения многослойных нейронных сетей. Алгоритм обратного распространения ошибки.	Интеллектуал ьное управление мехатронным и системами https://edu.vsu .ru/course/vie w.php?id=317 67
		2. Лабораторные занятия	
2.1	Нейросетевое управление. Робототехнический комплекс РОИН.	Проведение лабораторных работ с робототехническим комплексом РОИН.	Интеллектуал ьное управление мехатронным и системами https://edu.vsu .ru/course/vie w.php?id=317 67

13.2. Темы (разделы) дисциплины и виды занятий

Nº	/ Наименование раздела		Виды занятий (часов)						
п/ п		Лекции	Практические	Лабораторные	Самостоятельная работа	Всего			
1	Базовые понятия искусственного интеллекта.	5	-	-	6	11			
2	Системы управления с нечеткой логикой	5	-	-	6	11			
3	Экспертные системы.	5	-	-	6	11			
4	Нейронные сети.	5	-	-	6	11			
5	Нейросетевое управление	12	-	-	14	26			
7	Нейросетевое управление. Робототехнический комплекс РОИН.	-	-	32	6	38			
8	Промежуточная аттестация (экзамен)	-	-	-	-	36			
9	Итого:	32	0	32	44	108			

14. Методические указания для обучающихся по освоению дисциплины

Освоение дисциплины «Интеллектуальное управление мехатронными системами» включает лекционные занятия, лабораторные занятия и самостоятельную работу обучающихся. На первом занятии студент получает информацию для доступа к комплексу учебно-методических материалов. Лекционные занятия посвящены рассмотрению теоретической базы и основным алгоритмам и методикам интеллектуального управления мехатронными системами. Лекционные занятия предназначены для формирования умений и навыков, закрепленных компетенциями по ОПОП.

Для обучающихся рекомендуется самостоятельная работа с наборами микроконтроллеров (AVR, STM32) с различными периферийными устройствами. При

выполнении этих работ помощь окажет работа с конспектами лекций, презентациями, методическими указаниями, примерами программ. Основные материалы расположены на сайте https://edu.vsu.ru/course/view.php?id=31767.

Для успешного освоения дисциплины рекомендуется подробно конспектировать лекционный материал, просматривать основную и дополнительную литературу по соответствующей теме, чтобы систематизировать изучаемый материал.

Промежуточная аттестация проводится в письменной форме на основе вопросов из п.20.2.

При использовании дистанционных образовательных технологий и электронного обучения следует выполнять все указания преподавателя по работе на LMS-платформе, своевременно подключаться к online-занятиям, соблюдать рекомендации по организации самостоятельной работы.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
1.	Магда, Ю.С. Программирование и отладка С/С++ приложений для микроконтроллеров [Электронный ресурс] : . — Электрон. дан. — М. : ДМК Пресс, 2012. — 168 с. — Режим доступа: http://lanbook.lib.vsu.ru/books/element.php?pl1_id=4821 — Загл. с экрана.
2.	Жуков, Б. М. Исследование систем управления: учебник / Б. М. Жуков, Е. Н. Ткачева. – 5-е изд., стер. – Москва: Дашков и К°, 2023. – 206 с.: ил., табл., схем. – Режим доступа: по подписке. – URL: https://biblioclub.ru/index.php?page=book&id=710104 (дата обращения: 25.04.2025). – Библиогр. в кн. – ISBN 978-5-394-05332-0. – Текст: электронный.

б) дополнительная литература:

Nº	Источник
п/п	
3.	Белов, А.В. Самоучитель разработчика устройств на микроконтроллерах AVR [Электронный ресурс] : учебное пособие. — Электрон. дан. — СПб. : Наука и Техника, 2008. — 530 с. — Режим доступа: http://lanbook.lib.vsu.ru/books/element.php?pl1_id=35894 — Загл. с экрана.

в) информационные электронно-образовательные ресурсы:

№ п/п	Источник			
4.	«Университетская библиотека online» https://biblioclub.lib.vsu.ru/			
5.	ЭБС «Лань» https://lanbook.lib.vsu.ru/			
6.	https://edu.vsu.ru/course/view.php?id=31767			

16. Перечень учебно-методического обеспечения для самостоятельной работы

Самостоятельная работа обучающегося должна включать подготовку к лабораторным занятиям, контрольной работе и подготовку к промежуточной аттестации. Для обеспечения самостоятельной работы студентов в электронном курсе дисциплины на ообразовательном портале «Электронный университет ВГУ» сформирован учебно-методический комплекс https://edu.vsu.ru/course/view.php?id=31767, который включает в себя: программу курса, учебные пособия и справочные материалы, методические указания по выполнению заданий. Студенты получают доступ к данным материалам на первом занятии по дисциплине.

№ п/п	Источник					
1	Учебно-методическое пособие Описание одного алгоритма оптической стабилизации для модели трикоптера : учебно-методическое пособие для студентов 4-го курса бакалавриата и 1-2 курсов магистратуры факультета ПММ, обучающихся по направлениям: 01.03.03 - Механика и мат. моделирование, 01.03 03 - Прикладная математика и информатика.01.04 03 - Прикладная математика и информатика. https://edu.vsu.ru/course/view.php?id=31767					
2	Обзор принципов построения бесплатформенной инерциальной навигационной системы [Электронный ресурс] : учебно-методическое пособие для вузов : [для студ. фак. ПММ					

днев. и вечер. форм обучения, для направлений 01.03.03 - Механика и мат. моделирование; 01.04.03 - Механика и мат. моделирование, 01.03.02 - Прикладная математика и информатика] / Воронеж. гос. ун-т; сост. : И.С.Дегтярев, А.Ю. Яковлев .— Электрон. текстовые дан. — Воронеж : Воронежский государственный университет, 2015. http://www.lib.vsu.ru/elib/texts/method/vsu/m15-255.pdf.

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

Студенты, изучающие дисциплину, имеют доступ к соответствующему электронному курсу на платформе edu.vsu.ru. На данном ресурсе сосредоточены все материалы и презентации необходимые для работы, в том числе в дистанционной форме.

В дистанционной форме могут проводится лекционные занятия и лабораторные, а также текущая и промежуточная аттестация.

Информационные технологии для реализации учебной дисциплины:

- технологии синхронного и асинхронного взаимодействия студентов и преподавателя посредством служб (сервисов) по пересылке и получению электронных сообщений, в том числе, по сети Интернет;
 - сервис электронной почты для оперативной связи преподавателя и студентов.

Дисциплина реализуется с применением электронного обучения и дистанционных образовательных технологий, для организации самостоятельной работы обучающихся используется онлайн-курс, размещенный на платформе Электронного университета ВГУ (LMS moodle), а также другие Интернет-ресурсы, приведенные в п.15в

18. Материально-техническое обеспечение дисциплины:

Учебная аудитория для проведения лекций специализированная мебель, компьютер (ноутбук), мультимедийное оборудование (проектор, экран, средства звуковоспроизведения). ОС Windows 8 (10), интернет-браузер (Google Chrome, Mozilla Firefox), ПО Adobe Reader, пакет стандартных офисных приложений для работы с документами, таблицами (MS Office, Мой Офис, Libre Office).

Учебная аудитория для проведения лабораторных работ и организации самостоятельной работы: специализированная мебель, персональные компьютеры для работы возможностью подключения индивидуальной С К сети «Интернет», мультимедийное оборудование (проектор, экран, средства звуковоспроизведения). ОС Windows 8 (10), интернет-браузер (Google Chrome, Mozilla Firefox), ПО Adobe Reader, пакет стандартных офисных приложений для работы с документами, таблицами (MS Office, Мой Офис, Libre Office), специализированное ПО по тематике дисциплины (допускается демоверсия или виртуальный аналог ПО).

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
1.	Базовые понятия искусственного интеллекта.	ПК – 5	ПК – 5.1	Практикоориентированные задания / домашние задания. Контрольная работа (КИМ1)
2.	Системы управления с нечеткой логикой	ПК – 3	ПК – 3.2, ПК – 3.3	Практикоориентированные задания / домашние задания. Контрольная работа (КИМ1)

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор(ы) достижения компетенции	Оценочные средства
3	Экспертные системы.	ПК – 3	ПК – 3.2, ПК – 3.3	Практикоориентированные задания / домашние задания. Контрольная работа (КИМ1)
4	Нейронные сети.	ПК – 3	ПК — 3.2, ПК — 3.3	Практикоориентированные задания / домашние задания. Контрольная работа (КИМ2)
5	Нейросетевое управление	ПК – 3	ПК – 3.2, ПК – 3.3	Практикоориентированные задания / домашние задания. Контрольная работа (КИМ2)
6	Нейросетевое управление. Робототехнический комплекс РОИН.	ПК – 3	ПК – 3.2, ПК – 3.3	Практикоориентированные задания / домашние задания.
	Промежуточна форма контро	•	Перечень вопросов (КИМ3)	

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

- 1 Практикоориентированные задания/домашние задания. Проводится в письменном виде. Перечень заданий из задачников и пособий из п.16, например
 - 1. Продемонстрируйте работу простейшь персептрон на языке Processing.
 - 2. Организуйте с помощью системы CLIPS управление приводом мехатронного устройства.
 - 3. Выполните динамический алгоритм обучения многослойной нейронной сети.

Описание технологии проведения. Проводится контроль путем проверки выполненных упражнений и письменных ответов на вопросы.

Шкалы и критерии оценивания

Оценка	Критерии оценок
Отлично	Правильный ответ на вопрос. Получены основные характеристики объектов мехатроники.
Хорошо	Правильный ответ на вопрос. Получены основные характеристики объектов мехатроники, но есть некоторые ошибки.
Удовлетворительно	Неправильный ответ на вопрос, но правильно продемонстрированы некоторые характеристики объектов мехатроники.
Неудовлетворительно	Неправильный ответ на вопрос, нет понимания о характеристиках объектов мехатроники.

- 2. Текущая аттестация 1 в виде контрольной работы, письменно (КИМ1). КИМ содержать один из следующих вопросов:
- 1. Дайте определение искусственного интеллекта.
- 2. Основные этапы исторического развития и перспективы развития систем искусственного интеллекта.
- 3. Назовите области практического использования систем с искусственным интеллектом.
- 4. Архитектура и основные составные части систем с искусственным интеллектом.
- 5. Основные идеи и практическое применение нечеткой логики.
- 6. Лингвистические переменные и их описание.

- 7. Операции над нечеткими множествами.
- 8. Основная структура и принцип работы системы нечеткой логики.
- 9. Что такое фаззификация?
- 10. Каковы правила логических выводов и дефаззификация?
- 11. Пример использования системы с нечеткой логикой.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в форме письменных работ с их отправкой на сайт https://edu.vsu.ru/course/view.php?id=31767.

Требования к выполнению заданий (или шкалы и критерии оценивания)

тресования к выполнению задании (или шкалы и критерии еценивания)		
Критерии оценивания компетенций	Шкала оценок	
Обучающийся владеет теоретическими основами дисциплины,	Отлично	
способен применять системный подход и математические методы		
в формализации решения задач мехатроники.		
Обучающийся владеет теоретическими основами дисциплины,	Хорошо	
способен в целом описать системный подход и математические		
методы в формализации решения задач мехатроники.		
Обучающийся показывает отрывочные знания о теоретических	Удовлетворительн	
основах дисциплины, но может пояснить смысл основных	0	
подходов и математических методов в формализации решения		
задач мехатроники.		
Обучающийся демонстрирует отрывочные, фрагментарные	Неудовлетворите	
знания, допускает грубые ошибки при описании подходов и	льно	
математических методов в формализации решения задач		
мехатроники.		

3. Текущая аттестация 2 в тестовой форме на сайте https://edu.vsu.ru/course/view.php?id=31767 (КИМ2).

Закрытые задания (тестовые, средний уровень сложности):

- 1. Искусственный интеллект это
- а) раздел информатики, изучающий методы, способы и приемы моделирования и воспроизведения с помощью ЭВМ разумной деятельности человека*;
- b) процесс сбора, обработки и передачи данных;
- с) задача коммивояжера;
- d) задача о назначениях;
- е) установление степени соответствия объекта определенным признакам.
- 2. Период прихода искусственного интеллекта в промышленность:
- а) 1943-1956 гг.;
- b) 1952-1963 гг.;
- с) 1966-1974 гг.;
- d)1969-1979 гг.;
- е) 1980-1988 гг *.
- 3. Начало развития искусственного интеллекта на основе биотехнологий с:
- a) 1943-1956 гг. *;
- b) 1952-1963 гг.;
- с) 1966-1974 гг.;
- d)1969-1979 rr.;
- e) с 1987 г..
- 4.Общая цель интеллектуального управления:
- а) управлять в творческой манере *;
- b) управлять ресурсным обеспечением;
- с) в лингвистическом подходе;
- d) в образном мышлении;
- е) в действиях по аналогии.

- 5. Система интеллектуального управления должна иметь способность:
- а) воспринимать информацию о процессах, возмущениях и условиях функционирования;
- b) выводить заключения и обучаться *;
- с) организации итерационного процесса;
- d) организации реккурентного процесса;
- е) формирования дерева решений.

6.Интеллектуализация информационно-вычислительных систем имеет в виду:

- а) использование нового поколения инструментальных средств *;
- b) использование нового поколения математического, информационного и программного обеспечений *;
- с) организацию ресурсного обеспечения;
- d) классификацию возможных оценок:
- е) определение действительного и желаемого состояний объекта.

7.Информационно-вычислительные системы с интеллектуальной поддержкой применяются:

- а) для решения сложных задач, где смысловая обработка информации превалирует над вычислительной *;
- b) для формирования дерева решений;
- с) для случайного стационарного процесса;
- d) для формирования стратегии;
- е) для разработки схемы решений.

8.Система с интеллектуальной поддержкой – это система:

- а) способная самостоятельно принимать решения *;
- b) для формулировки задачи;
- с) для постановки задачи;
- d) для решения задачи идентификации;
- е) для разрешения задачи.

9.Предметная область - это:

- а) объектно-ориетированным образом выделенная и формально описанная область человеческой деятельности *;
- b) единая программно-аппаратная платформа и единая база данных;
- с) процесс обработки данных;
- d) процедура замены случайных параметров их неслучайными характеристиками;
- е) процедура имитации случайного процесса.

10.Проблемная область - это:

- а) предметная область плюс совокупность решаемых в ней задач *;
- b) обеспечение выполнения заказов и предотвращения перегрузки производства;
- с) решение задач синтеза сложных структур;
- d) процедура формирования структуры;
- е) процедура метода мозгового штурма.
- 11. Неформализованные задачи это задачи, для которых справедливо:
- а) невозможность задания в числовой форме *;
- b) отсутствие точно определенной целевой функции и алгоритмического решения *;
- с) отыскание стратегии действий;
- d) вычисление значений целевой функции;
- е) обучение коллективному принятию решений игроков.

12. Экспертная система (система, основанная на знаниях) - это:

- а) сложный программный комплекс, аккумулирующий в формальном виде знания специалистов в конкретных предметных областях *;
- b) система формирования глобального плана заказов поставщикам;
- с) система для расчета минимальных потерь;
- d) система для формирования алгоритмов анализа;
- е) система для представления результатов вычислений в виде таблицы.

Открытые задания (тестовые, повышенный уровень сложности):

1. Инженер по знаниям (когнитолог, инженер-интерпретатор) - это:

- а) специалист, выступающий в роли промежуточного буфера между экспертом и базой знаний *;
- b) специалист по динамической корректировке плана закупок;
- с) специалист по иммитационному моделированию;
- d) специалист в области принятия компромиссных решений;
- е) специалист в области идентификации.
- 2. Технология синтеза экспертной системы это технология:
- а) создания на основе знаний экспертов систем, решающих неформализованные задачи *;
- b) управления всем производством;
- с) формирования стратегии решения задачи синтеза;
- d) постановки плана проведения эксперимента;
- е) идентификации, постановки и решения задачи исследования.
- 3. Абстрагирование понятий это:
- а) выделение существенных признаков и связей и игнорирование несущественных *;
- b) интеграция всех подразделений и функций корпорации;
- с) формирование квадратичного критерия качества;
- d) решение задачи о коммивояжере;
- е) способ управления.
- 4. Под интеллектуальной системой понимается:
- а) совокупность технических средств и программного обеспечения, работающая во взаимодействии с человеком, способная синтезировать цель *;
- b) принимать решение о действии и находить рациональные способы достижения цели *;
- с) детерминированный процесс ресурсораспределения;
- d) стохастическая задача распределения ресурсов;
- е) задача о назначениях.

Описание технологии проведения. Проводится в виде теста в электронной образовательной среде «Электронный университет ВГУ». Большая часть вопросов проверяется автоматически, проверки преподавателем с ручным оцениванием требуют только вопросы с кратким текстовым ответом или представленные в форме эссе

Критерии и шкалы оценивания:

Для оценивания выполнения заданий используется балльная шкала:

1) закрытые задания (тестовые, средний уровень сложности):

- 1 балл указан верный ответ;
- 0 баллов указан неверный ответ, в том числе частично.
- 2) открытые задания (тестовые, повышенный уровень сложности):
 - 5 баллов задание выполнено верно;
 - 2 балла выполнение задания содержит незначительные ошибки;
 - 0 баллов задание не выполнено или выполнено неверно.

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств: КИМ3.

КИМ содержит один из следующих вопросов:

Перечень вопросов:

- 1. Базовые понятия и назначение экспертных систем.
- 2. Структуры экспертных систем.
- 3. Методология построения экспертных систем.
- 4. Представление знаний, уровни представления и детальности знаний.
- 5. Методы поиска решений в экспертных системах.
- 6. Инструментальные средства. Система CLIPS.
- 7. Нейрон и его модели.
- 8. Простейший персептрон.
- 9. Системы типа Адалайн.

- 10. Классификация искусственных нейронных сетей.
- 11. Статические линейные однослойные нейронные сети.
- 12. Статические многослойные нейронные сети.
- 13. Алгоритмы обучения статических многослойных нейронных сетей.
- 14. Динамические алгоритмы обучения многослойных нейронных сетей.
- 15. Алгоритм обратного распространения ошибки

Описание технологии проведения

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования. Формат проведения – экзамен, в том числе на сайте https://edu.vsu.ru/course/view.php?id=31767.

Требования к выполнению заданий, шкалы и критерии оценивания

Критерии оценивания компетенций	Шкала оценок
Обучающийся владеет теоретическими основами дисциплины,	Отлично
способен использовать методы физического моделирования и	
современное экспериментальное оборудования для получения	
необходимых данных при работе с мехатронными и	
робототехническими системами.	
Обучающийся владеет теоретическими основами дисциплины,	Хорошо
способен в целом описать методы физического моделирования и	
современное экспериментальное оборудования для получения	
необходимых данных при работе с мехатронными и	
робототехническими системами.	
Обучающийся показывает отрывочные знания о теоретических	Удовлетворительн
основах дисциплины, но может пояснить смысл методов	0
физического моделирования и принципы функционирования	
современного экспериментального оборудования для получения	
необходимых данных при работе с мехатронными и	
робототехническими системами	
Обучающийся демонстрирует отрывочные, фрагментарные	Не зачтено
знания, допускает грубые ошибки при описании методы	
физического моделирования и принципов функционирования	
современного экспериментального оборудования для получения	
необходимых данных при работе с мехатронными и	
робототехническими системами	

Оценка промежуточной аттестации формируется как интегральная оценка по следующей формуле:

$$oldsymbol{Q}_{ ext{проматтест}} = rac{oldsymbol{Q}_{ ext{текаттес}}}{2} + rac{oldsymbol{Q}_{ ext{экзамен}}}{2}$$

При округлении оценки используется правило округления. При получении оценки менее 3 баллов - выставляется «не зачтено». Считается, что контрольная работа и лабораторные работы должны быть зачтены.

Студент, выполнивший в полном объеме программу курса (выполнено практическое здание с оценкой «отлично» и/или «хорошо» (по собеседованию сумма баллов выше нуля и контрольная работа зачтена) и имеющий посещаемость занятий 75% и более, на усмотрение преподавателя может быть освобожден от вопросов к зачету. В этом случае промежуточная аттестация осуществляется по текущей аттестации. Итоговая оценка в этом случае, выставляется как балл по практическому заданию.

20.3 Задания раздела 20 рекомендуются к использованию при проведении диагностических работ с целью оценки остаточных результатов освоения данной дисциплины (знаний, умений, навыков).